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ABSTRACT 

I 

In double differencing a regression system obtained from concurrent Global 

Positioning System (GPS) observation sequences, one either under-samples the 
system to avoid introducing colored measurement statistics, or one fully samples 

the system incurring the resulting non-diagonal covariance matrix for the 

differenced measurement errors. A suboptimal estimation result will be obtained 
in the under-sampling case and will also be obtained in the fully sampled case 
unless the color noise statistics are taken into account. The latter approach 

requires a least squares weighting matrix derived from inversion of a 
non-diagonal covariance matrix for the differenced measurement errors instead of 
inversion of the customary diagonal one associated with white noise processes. 
This publication presents the so-called fully redundant double differencing 

algorithm for generating a weighted double differenced regression system that 

yields equivalent estimation results, but features for certain cases a diagonal 
weighting matrix even though the differenced measurement error statistics are 
highly colored. 
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I. INTRODUCTION i 
I The concurrent operation of two or more Global Positioning System (GPS) ground 

I 
~ yield high accuracy relative positioning. Concurrent operations produce 

terminals observing multiple GPS satellites generates multiple data streams that 

simultaneous observational epoch sequences among the multiple data streams, 
which allows one to eliminate errors in the state vector estimates that arise 
from common mode-error sources in the data streams. In particular, the effects 
of unknown and imperfectly running clocks on board the satellites and in the 

ground terminals may be avoided. 

clock errors in the regression equations may be estimated in parallel with the 

state vector in an expanded state space mode, this approach leads to very large 

arrays unless a partitioning technique is used. 

eliminate the clock terms before obtaining the estimate of the state vector. In 

the latter approach, the regression equations are double differenced at 

simultaneous epochs to cancel the clock parameters before the state vector is 

estimated. Alternatively, the regression equations are not differenced; rather, 

a series of orthogonal transformations are applied to the system. 
transformations effectively eliminate these common mode errors while yielding a 

minimum variance estimate of the state vector. One technique following the 

latter approach involves the operation on the regression system in either a 

batch or sequential mode by a series of Householder matrices, tailored to this 
problem, that transforms the information matrix into the form of an upper 

triangular array. 
clock information. Thus, these Householder transformations effectively 
eliminate clock errors before the actual inversion of the state vector 

triangularized information matrix takes place [1,2]. The advantage of the 

Householder matrices or similar approaches is that additional modeling and 

priori information about these errors can be readily introduced in the 

estimation process without explicitly solving for the clock errors. 

example, the stochastic properties of the clock variability may be modeled by 

specification of the parameters from a first order Markov process. 

Alternatively, the clocks in GPS terminals collocated at VLBI fiducial sites can 

be slaved to the resident hydrogen maser. 

provides important additional information, particularly in the control of errors 
in the estimated GPS ephemerides, which would be lost in a double differencing 

mode. 

Although a parameterized representation of the 

Alternative approaches 

These 

The lower portion of this upper array is explicitly free of 

For 

Their near-linear time behavior 
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The double differencing approach appears to offer simplicity by eliminating the 

clock parameters straightaway. Double differencing is attractive because the 

differenced residuals lend themselves to an easy and traceable physical 

interpretation, whic,h is not usually the case with residuals obtained from 

Householder or similar orthogonal transformations. Double differencing is also 

particularly useful in a noisy environment for editing functions, such as 
detecting and removing carrier cycle dropouts and other error sources from the 

data streams. A potential disadvantage of double differencing is that it 
usually results in colored noise in the estimation problem. A l s o ,  techniques 

that involve an orthogonalization of the information matrix such as, for 

example, the Householder approach, tend to be more computationally efficient. 

Nevertheless, there are situations where double differencing may be a practical 

necessity or even preferable in a data management sense. 

This publication addresses two full-rank approaches to double differencing: the 
so-called minimally redundant approach and the fully redundant approach. 
full-rank approach is one in which the double differencing in a matrix operator 

sense has maximal rank and hence spans the linear vector space defined by the 

regression system. Double differencing introduces colored noise statistics into 
the differenced measurement error covariance. To obtain estimation results that 
are equivalent to those obtained by the expanded state or Householder methods, 

these approaches require a least-squares weighting matrix that is derived either 

from an inversion of the colored-measurement error-covariance matrix, which is 

nondiagonal to a varying degree depending on the differencing scheme used and 

the number of stations and satellites involved. Alternatively, one can use a 

whitening transformation on the differenced regression system before obtaining 
the inverse. 

A 

The computational time for numerical inversion of the nondiagonal covariance 

matrix tends to grow as the cube of its size. However, if the undifferenced 

measurement statistics are white, then the double-differenced covariance matrix 

may be only mildly striped if either the number of terminals or satellites is 
moderate. In this case, more efficient matrix inversion techniques are 

available [ 3 ] ,  which tend to grow somewhat more slowly than the cube of the 

matrix size. A l s o ,  analytic inverses 

error covariances with simple forms. 

diagonal weighting matrix for certain 

are available for certain measurement 

The fully redundant approach features a 

forms for the undifferenced 
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measurement-error covariance even though the double-difference measurement-error 
I statistics are highly colored. This feature may provide a computational 

advantage in limited situations. On the other hand, the number of differencing 
operations themselves in this approach tends to grow quadratically with the 

number of terminals and with the number of GPS satellites. 

indicate that this method should be considered competitive in computational time 

only in those cases where the number of terminals or the number of observed 

satellites is modest, i.e., roughly four or less, and only in cases where 
analytic forms for the diagonal weighting matrix are available. 

forms are not available and one wishes to use double differencing, then a 

full-rank but minimally redundant doubled-differencing approach appears to be 

the most straightforward [ 3 ] .  

, 
Comparative studies 

If analytical 

After a general description of the regression problem given in the next section, 
this publication discusses double differencing operations and the equivalence 
under certain conditions of the resulting least-squares estimates to those 

obtained by other techniques. 
fully redundant double difference matrix operators and their least-squares 
weighting matrices. In the fully redundant approach, its corresponding 
white-noise-equivalent diagonal weighting matrix is developed. 
analytic forms of this .diagonal matrix can be generated in some cases. In 

theory a composite diagonal and antisymmetric weighting matrix can be generated 

in all cases, but the practicability of generating analytic forms appears 

limited to certain restrictive assumptions about the topological properties of 

the undifferenced measurement error covariance. Finally, the paper treats the 
problem of missing data streams or outages in double differencing. 

The publication then discusses minimally and 

It is shown that 
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11. PROBLEM STATEMENT 

We consider the case where m ground terminals are concurrently tracking r GPS 

satellites from which mr distinct data streams are generated in parallel with 

simultaneous observational epoch sequences in each stream. The measurement 

types assumed here are either the undifferenced carrier phase or the group delay 

based ranging, which are characteristic of single GPS receiver operations. 

carrier phase measurements are assumed to be phase connected although this 

assumption is not fundamental to what follows. 

state vector, the measurements are corrupted by the offsets of the clocks from 

universal time. A linear regression system of the form 

The 

In addition to depending on the 

y =&X + e = [B:H] [:]+e 

is assumed where the vectors y and X represent small differences from nominal 

values and where: 

y is the mrN by 1 observation vector 
N is the number of observational epochs in each data stream 
&is the grand information matrix for the regression system 

X is the expanded state vector of dimension p + (m + r)N by 1 

e is the measurement error vector 

B is the mrN by (m + r)N clock vector information matrix 
H is the mrN by p state vector information matrix 
b is the (m + r)N by 1 clock error parameter vector 

x is the p by 1 state vector 

The state vector consists of the parameter set except clocks that are required 

to properly define the dynamical and observational systems. Thus, in addition to 

state vector information for GPS terminals and GPS satellites, x would also 
include carrier cycle ambiguities, propagation media parameters, etc. 

4 



1 
I 

The clock characteristics aboard each satellite and in each terminal are not 

modeled in this problem. Rather, each clock error at any epoch is assumed 

(rather pessimistically) to be uncorrelated with any other. Thus, the vector b 

represents the (m + r)N separate clock errors. The rank of B is (m + r - l)N 
because the sum of the clock parameters at each epoch is unobservable for the 

linear problem. The information matrix H is assumed to be of rank p. The error 

vector e is assumed to have standard mean zero white Gaussian noise properties 
and a covariance matrix o f A  . 

' 
I 

e 

It is assumed that y anddhave been appropriately formatted, with the 
time-ordered subblock of observation residuals and regression coefficients 

generated from observations of the same satellite by the same terminal grouped 

in contiguous rows. Additionally, the m subblocks arising from observations of 

the same satellite by the m different terminals are placed contiguously to 

create a single block containing the information from the entire set of 

observations of the same satellite. The r blocks associated with observations 

of the r different satellites, each with the identical substructure, are grouped 

contiguously to fill out the complete observation vector and information matrix. 

For example, with r = 4 and m = 3 ,  H would appear as 
m = 3  

T;iBTiBTiBT:: Ti Ti Ti; Ti Ti ':C :C :C ..D D D 3 : :  11 21 31: 1. 2. 3 : :  11 2: 3 

r = 4  

where the subscript denotes the terminal and the letters A, B, C and D denote 

the information submatrices from N observations each from four different 
satellites, 

satellite designations, then, following the form in Eq. ( 2 ) ,  H may be written as 
denoting subscripts as terminal designations and superscripts as 

m subblocks - 
. > 

r blocks 
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The units and scale of the clock parameters have been chosen the same as those 
of the observation vector y .  It follows, provided that the regression equations 
have been formatted according to Eq. ( 3 ) ,  that B, the clock parameter 
information matrix, consists of ones and zeros in the pattern shown below 

r 1 

B =  

L 

-1 
m N  r N  

where 

and 1 is given by m 
m 

T -  = [I: --• :I] lm 

I 
i 
' rmN (4) 

The identity matrices in Eqs. (5) and ( 6 )  are N by N. 

In a batch mode version of the Householder approach for eliminating the clock 

parameters [l], one operates on Eq. (1) with a series of orthogonal Householder 
matrices [2] that transforms it into the form 
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i where R is a square (m+r+p)N matrix consisting of an upper triangular array with 

zeros below the diagonal. In particular, the minimum variance state vector 

estimate 2 is given by 

-1 
x yx 2 = R  

and its covariance matrix A is given by 
X‘ 

It is noted that R is the transformed information matrix in which the clock 
information is explicitly absent; thus, there is no need to jointly solve for 

clock parameters unless one desires their estimates or has other a priori 

information about them. 

X 

A weighted least squares method that is equivalent to but less efficient than 
the Householder method is the so-called augmented state space approach. 

it is relatively better known we will use this formulation rather than the 

Householder formulation to establish the equivalency of the double differencing 

approach. Here, one adjoins the clock parameter vector b, to the state vector x, 
and obtains a joint minimum variance estimate of this augmented state vector 

using a standard least squares batch mode approach. The grand covariance matrix 
of the augmented state vector estimate is obtained from the pseudoinverse of 

Because 

L I J 

The pseudoinverse of Eq. (10) can be written in partition form as 
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where A 
the cross-covariance and covariance associated with the clock parameter 

sequences. (Pseudoinverses appear because the rank of B B is m+r-1 instead of 

m+r. By fixing the clock at the first ground terminal, for example, one then 
T eliminates the first column from B, thereby rendering B B into a full rank 

matrix. In this case, the pseudoinverse operations in the subsequent discussions 

may be replaced by a standard inverse. The ensuing results are not materially 

different from those obtained with the pseudoinverse approach.) We assume that 

H is of full parameter rank p and that the column vectors of H are linearly 

independent of those in B. Using the properties of pseudomatrices, it can be 
shown for matrices of the form in Eq. (11) that 

is the covariance of the state vector estimate 2, and where F and G are 
X 

T 

[HTnH] A -  [HTflH] = [HTflH] 
x 

where the matrix II is defined by 

T -1 t T -1 1 = A - l  - A-' B I B  A B] B Ae e e e 
T Hence, if the inverse of [H nH] exists, it fol,Dws t..at covariance of 2 is given 

by 

(14)  

Also, it follows that 2 is given by 

-1 T 
% =  

It can be shown [2] that Eqs.(8) and (15) are equivalent and that Eqs.(9) and 

(14) are also equivalent. Even in this augmented state space approach, by using 

this matrix partitioning technique one need not explicitly solve this system for 

the clock parameters. 

Because the matrix II and its factorization serves as a bridge between the 
augmented state space and the double differencing approaches, a few observations 
about some of its properties should be noted. From the least squares projection 

theorem in linear vector spaces [4] (or from multiplying Eq. (13) by B), it 

follows that II is orthogonal to B. Also,n, which has a rank of (m-l)(r-l)N, has 
the property that 
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n = n  hen 
i 

“I 

The matrix n , given by 

is an idempotent matrix and its own pseudoinverse with a trace equal to 

(m-l)(r-1)N. 

Finally, it should be noted that n itself, which is a relatively simple matrix 
to generate, serves as a matrix operator which, when applied to Eq. (l), 
transforms it into a new regression system that is explicitly free of clock 

terms. By premultiplying Eq. (1) by n ,  one obtains 

It is easily shown that the resulting least squares estimate for x and its 

covariance matrix obtained from Eq. (18) are formally identical to those in Eqs. 

(15) and (14). This suggests yet another method in lieu of double differencing 

for eliminating clock parameters. 

111. DOUBLE DIFFERENCING OPERATIONS AND CONDITIONS FOR EQUIVALENCE 

In the double differencing approach one operates on the system in Eq. (1) in 

such a way to explicitly eliminate the clock parameters from the resulting 

regression system before carrying out the filtering operation. 

A double differencing operation first differences the regression equations 
associated with the simultaneous observations by two terminals of the same 
satellite, and then it differences two such first differences obtained from the 
same two terminals simultaneously observing two different satellites. 

Alternatively, these operations may be reversed, but the result is the same. 

9 



While double differencing operations can be variously formulated, all 

formulations have the property of totally eliminating the clock matrix B from 
the resulting double differenced regression equations. In matrix notation, let 

G4 be a double difference matrix operator. Then, it follows that 

BIB = 0 (19) 

If one carries out the double differencing of the regression system in Eq. 

(1) following theg-matrix formulation, one obtains 

a new system of regression equations to be solved in a least squares sense for 

the state vector x. Letting be defined by 

we have for the covariance of 

= ( 2 2 )  
A _  e e 

a nondiagonal, colored matrix whose size depends on one's choice forg. 
rank ofh; is at most mrN, which may be smaller than its size depending on the 

specific differencing algorithm used. Consequently, one should use the 

pseudoinverse ofA- in the formulation for the least squares estimate of x. 
Then,h ;; is given by 

The 

e 

and 2 is given by 

If the state vector estimate and its covariance in Eqs. (24) and (23 )  are to be 
equivalent to those in Eqs. (15) and ( 1 4 ) ,  it follows that 

10 



' To establish the conditions for this equivalence, it is sufficient to find mrN 

linearly independent nonzero vectors 6 such that t 

M E  E 0 (26) 

The matrix B contains (m + r - l)N linearly independent column vectors and from 

the orthogonality condition in Eq.  (19) and the properties of pseudoinverse 
matrices it follows that 

M B  E 0 (27) 

Next, we premultiply Eq.  (25) byA (assumed to be full rank) and then by g t o  

obtain 
e 

@A=M t 0 (28) 

If 9d fully spans the vector space orthogonal to the space spanned by the columns 

of B, it will contain (m - l)(r - l)N linearly independent column vectors. 

Because g i s  also orthogonal to B, E q s .  (27) and (28) serve to establish that M 
3 0 and, thus, to establish the equivalence of E q s .  (23) and (14), also E q s .  

(24 )  and (15)  when'g fully spans the space orthogonal to B. It is readily shown 

that any double difference operator that preserves the white noise statistics of 
the differenced measurement errors must have a rank less than (m-l)(r-1)N; 

hence, in general it will yield non-equivalent results. 

An example of a full rank but minimally redundant operator is given by 

where D, a first difference operator of full rank m-1 but minimally redundant, 
is given by 

11 



D =  

c 

1 -  
1 
0 

0 

1 
. 

The operator in Eq. ( 2 9 )  is minimally redundant because it generates the least 
number of rows in the double differenced regression matrix while maintaining a 

full rank of (m-l)(r-1). It is called "redundant" because one row and one block 

of the undifferenced system appear respectively in all rows and all blocks of 
the differenced system. The covariance of (Eq. ( 2 2 ) )  using this operator is 

non-diagonal and generally requires a numerical inversion to obtain the least 

squares weighting matrix. 

certain simple forms of A analytic inverses can be readily derived. (See 
Appendix 1.) Remondi [ 3 ]  has provided an example of this fo r  m = 2. 

However, for modest values of m or r and/or for 

e' 

IV. THE FULLY REDUNDANT DOUBLE DIFFERENCE MATRIX OPERATOR 

Because the double differenced measurement error covariance matrix in Eq. (22) 
may be highly non-diagonal as a result of the differencing operations and 

because it may also be quite large, we present an algorithm which enables one to 
replace it with an equivalent diagonal form. To accomplish this we define a 

specific form for the double difference matrix operator. (See Appendix 2 for a 

more detailed discussion.) 

Let us define a first difference operator Dk, which when applied to another 
matrix of k block rows, generates the (i) distinct pair differences that can be 
formed from these block rows. For example, for k = 1, 2, 3, and 4, D is given k 

I I  I I - I I  0 
I I  

I I O  1-1 

--+-1---l--- 
0 [ O ' I I - I  

I 
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Thus, D operating on a k by p matrix H creates a new (:) by p matrix, whose 

rows comprise the (i) distinct ways that pair differences can be formed from the 
original k rows. 

k 

Next, the analogous double difference 0perator.gi.s defined by 

} r - 1  

} r - 2  

1 1  
T 

mrN columns 

(Henceforth, D will be interpreted as an mth order D-matrix unless otherwise 
specified; thus, the subscript m is dropped.) The rank o f g  is (r-l)(m-1)N; 

hence, 9 fully spans the vector space orthogonal to B and therefore, the 
operation on H by gfully retains the information content in H. 

The operationg H converts the undifferenced information matrix H, consisting of 

mrN rows, into a fully redundant double differenced information matrix, R, 
consisting of (;) ( z )  N rows. In the example of Eq. (2) with r = 4 and m = 3, 

the operation H yields 18 row blocks of the form 

One of the potential disadvantages of this double differencing algorithm for 

large m and r is clearly seen from Eq. (32) or (33); the number of rows 
generated b y 9  increases quadratically in both m and r. This should be compared 

with the Householder approach which does not expand the regression system. In a 
sense, the8 operator generates (:)(i)-(m-l)(r-l) extra or Itredundant" 

regression blocks; but, as we shall now show, these lead to a diagonal form that 

is equivalent to A 0 .  t 
e 
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V. DIAGONAL FORMS FOR THE g - M A T R I X  FORMULATION 

From t h e  equiva lence  of E q s .  ( 1 4 )  and ( 2 3 ) ,  it fo l lows  t h a t  n ,  d e f i n e d  by E q .  

( 1 3 ) ,  i s  also g iven  by 

I n  t h e  case whereAe i s  d iagonal  and uniform,  

simple form given  by 

n can be reduced t o  a remarkably 

( 3 5 )  n = g T w g  

were W i s  a (T)(:)N by (Z)(;)N d iagonal  weight ing matrix. This  i s  e q u i v a l e n t  t o  

t r e a t i n g A e  as whi te  and r e p l a c i n g  [gAeH 
t with  W i n  E q s .  ( 2 3 )  and ( 2 4 ) .  

This  raises t h e  q u e s t i o n  whether or  n o t  o t h e r  s t r u c t u r e s  f o r h  e also l e a d  t o  

d iagonal  forms. 

expressions for  W f o r  certain cases. 

W e  w i l l  show t h a t  t h i s  i s  so and w e  w i l l  o b t a i n  a n a l y t i c  

The Case of  Uniform Measure Error Covariance 

For  t h i s  c a s e , A e  i s  g iven  by 
.. L A = a 1  e 

where I i s  a n  m r N  x m r N  i d e n t i t y  matrix. 

pseudoinverse of  g i s  g iven  by 

It i s  shown i n  Appendix 1 t h a t  t h e  

For t h i s  case, n i n  Eq.  ( 3 4 )  reduces t o  

raTmTg 2 2 2  n =  
m r a  

which, u s i n g  t h e  pseudoinverse properties of g a g a i n ,  reduces t o  

14 



T T 2 Thus, because of the rank deficiency of [9 91, both [GBg ]/m2r2a2 and I/mra 

1 serve as the pseudoinverse in Eq. (34) and provide the same result for n. 
Factorization of II in Eq. (39) leads to a form for A; given by 

where the weighting matrix W in this case is given by 

w = -  
2 mra 

Also, 2 is given by 

An alternative derivation based on an explicit evaluation of Eq. (13) is 

provided in Appendix 3 .  It is noted that Eq. (38) provides an interesting 
T T 2 2 2  duality property. If one thinks of Eq. ( 3 8 )  as the form0 [W IgJhn r a then 

one has the double differencing formulation involving the inner products of 

arrays of dimension other hand, if one thinks of Eq. ( 3 8 )  
1 

then one has the equivalent matrices that 1 having the form - mro 
must result from the expanded state or from the Householder approaches. Here, 

the array products are only mrN in dimension. 

1 T  An operational definition of - w0l is provided by Equation (A-14) in Appendix 
1 2. An inspection of Eq. (A-14)shows that the operation by - [gTa on the mr 

matrices H and y involves the double subtraction of t w o  mean values of the 

elements of these matrices from each element (plus a correction for double 
counting). These mean values are obtained from averaging over the set of 
terminals and over the set of satellites. Bierman [SI has shown that the 
Householder operation leading to triangularization involves the identical 

averaging processes in the case of uniform measurement error covariance. These 

averaging and subtraction processes have the net effect of cancelling the effect 

of clock terms in y except that it is accomplished by a linear combination of 

the rows of y rather than by explicit double differencing. 

mr 
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The Case Whenh Is Factorable 
L 

WhenAeis factorable into the form 

where av is a scalar and b is- an mN by mN diagonal matrix, or equivalently, when 
the standard deviation u ‘of the error for the jth terminal observing the v th 

satellite is given by 
j 

then it may be shown using techniques described in Appendices 2 and 3 that a 

diagonal form for W is given by 

I 
1 1 2 2  

01 “201 O2 
0 

I 
1 1  2 2  

“1 ‘3‘1 “3 
\ 

‘\ 

I I  I 
1 1 3 3  I t  “ I  “2”l “2 

\ i i  
I I  

\ I I  
I I  

\ 
\ 

\ 

\\ I I  
I I I  

I 
r - l  r - 1  r r 

‘1 “2 Ol”2 
\ 

\ 
\ 
\ 
\ 

I 
\ 

Eq. (45) is also obtained by renormalizing the clock parameters. 

(45) 

These 
rescaling factors provide m+r-1 degrees of freedom, which are sufficient to 

transform this problem into an equivalent uniform one. 

it may be shown that II has the form 
For the factorable case 
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where 1 is the N by mrN unitary column matrix (see Appendix 1) and 

I 1 ~ ~ ~ 1  I the Euclidean norm of nez. 
general diagonal form. 

1 -1 
Eq. (45) is not valid when A e has a 

The success in deriving a simple analytical expression for the diagonal 

form of W in the cases of uniform and factorable measurement error covariances 

encourages one to seek other cases where this is so. Wu [6] has shown for 

problems involving single differenced observables with one independent clock 

error sequence for each data stream, for example, VLBI-like sequences, that an 

analogous diagonal form for this single differenced version always can be 

established whenh is diagonal. In the double differenced case, the matter is 

less straightforward. 
e 

VI. THE EXISTENCE OF DIAGONAL FORMS FOR THEg-MATRIX FORMULATION 

To explore the existence question of possible diagonal forms for W one equates 
the forms for II as given in Eq. (13) and in Eq. (35); from this one derives the 
appropriate form for W. For certain forms for A one can actually carry out 

the matrix algebra operations indicated in Eq. (13) (See Appendix 3 ) .  

Alternatively, one can use the idempotent-related properties of 1 given in Eqs. 
(16) and (17) (see Appendix 4). In the more general case fl would be generated 
numerically using Eq. (13); the numerical values of the elements of W could 

still be obtained from equating E q s .  (13) and (35). However, any efficiencies 

gained in using the fully redundant approach would be lost in the numerical 
inversion of Eq. (13). From Eq.(13) II may be written in the form 

e 

n =  

where each of these mN by mN sub-matrix blocks of nis constrained by 

nBT =nB=O 

(47) 
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2 2 2  2 2 2  which constitutes [m r N -(m-1) (r-1) IN independent orthogonality conditions. 

Arbitrary forms for A break the symmetries in the off-diagonal sub-blocks of n. 
Although is symmetric, its individual off-diagonal submatrix blocks are in 

general not symmetric. It would follow that U could not be diagonal. However, 

because of the rank deficiency of [D W D ] ,  the form of W is not unique, as was 
already demonstrated in the uniform case. 
array of quadratic forms, II can be reformatted without altering the values of 
the elements in H n H .  This is accomplished by expressing each sub-block of IT 
as the sum of a symmetric matrix and an antisymmetric one. For example, the 

matrix E in Eq. (47) may be written as 

e 

T 
T Moreover, inasmuch as H IIH is an 

T 

where 
with 

and E are respectively the symmetric and antisymmetric components of E, 

(50) 
T 

= ( E  + E )/2 

and 

With these replacements II may be written as 

-t A 

where‘n and n are symmetric. The forms of these matrices are given by 

and 



.., 
All of the r2 sub-blocks of n are symmetric. 
sub-blocks of n is antisymmetric and the negative of the corresponding sub-block 
in the transpose position of n. 

Each of the off-diagonal 
I ,. 
I 
I 

.. A 

Hence, the diagonal sub-blocks of n are zero. 

r 

0 Ej2 
-2 \ -w 0 
\ \  

\ 

0 
J 

I 
I In a similar fashion we write W in the form 

w = Q + Q  ( 5 5 )  

Here, fi is a diagonal matrix and 23 is a symmetric but singly striped 
off-diagonal matrix. These matrices are given in block diagonal form by 

cu 

W =  

-k where w 
has the striped form 

is the kth diagonal silbmatrix of dimension (Y)N by (T)N. The matrix 23 

( 5 7 )  

-k where w is antisymmetric. 

blocks that fill the entire mrN by mrN array. 

The form [ D T k ]  leads to r2 mN by mN submatrix 

By Eq. (32 ) ,  [DTm] has the form 

pe.3 = 

D - T-1 T -2 - D T ~ r  -1 - D  W D - D  W D ... T -1  D (W +...+ R r - ’ ) D  

- D T G ’  D DT (E1 +z + . . . +?? -3)  D . . . - DT$r-3D 

D - D T ~ r  - 1  

Similarly, [gT@g] has the form 

. . . . 0 \ DTfi(Z)l :  ( 5 9 )  
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where the matrix nk is a combination of the *Is and hence antisymmetric. 

The matrix n as given in E q .  ( 4 7 )  is easily obtained from the numerical matrix 

operations indicated by E q .  (13) with N=l. Upon reformatting I'I according to E q s .  

(50) and (54), and equating these expressions to E q s .  (58) and (59), one 

obtains the appropriate values for the elements of W. For example, equating the 
upper right hand corner sub-matrix block in the two expressions for n ,  one 
obtains 

In this expression 3 is the symmetric mxm matrix occupying the upper right 

corner block of n. From the definitions of D and % given by E q .  (31) and E q .  

( 5 6 ) ,  E q .  ( 6 0 )  may be written as 

n. 

I :  . 
. . 

-r-1 

Analogous equating operations yields the antisymmetric 
From E q .  (61) one obtains numerical values for the elements of W for 

arbitrary forms for Ae. 
elements of g. 
usually are uniform over the data streams. Nevertheless, the method described 

here for generating the weights is straightforward and independent of N; the 
computation of II needs to be made only once when m,r,and A 

In practice, the standard deviations of the measurement errors 

are specified. e 

In summary, W can not in general be a diagonal array, although, it can be 

written as the sum of a diagonal array and a singly striped symmetric array with 

antisymmetric submatrices. The question arises whether or not the least squares 

weighting matrix for the minimally redundant operator given in E q .  (29) also has 

an equivalent diagonal form. However, for this to be true the rows of E q .  ( 2 9 )  

would have to be the eigenvectors associated with the non-zero eigenvalues of 

Ae, which is generally not true. 
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VII. THE CASE OF OUTAGES I I 
In the usual tracking situation, satellites rise and set and the mix of 

satellites and terminals in the data streams changes with time. Also, receivers 

occasionally lose data because of instrumental or environmental reasons. These 

cause a considerable sorting problem for the double differencing approach. One 

approach is to decompose the tracking session into subsessions with epoch 

boundaries marked by the onset or termination of an outage for a particular 

terminal. These subsessions would be mutually exclusive and exhaustive. 

Enumerating these subsessions by the index i, it is clear (provided that e is at 
least white across all subsession boundaries) that the covariance matrix for the 
entire tracking session would be given by 

A:' x '  kAz'(i) X 

1'1 

where AA(i) is the covariance for the ith subsession and n is the total number 

of subsessions. 

streams will remain invariant during each subsession. 

X 
By this means, whatever outages there are among the mr data 

The outage case for the jth terminal observing thevth satellite can be treated 

by setting u" = 00 in A . 
other than the ones corresponding to the missing data streams, analytic diagonal 

forms for W can be found, although these expressions become rather complicated 

as the topology of A 

increases sufficiently to reduce a particular terminal down to observations of 
only one satellite (or observations of a particular satellite by only one 

terminal), then the form of W eliminates that terminal (satellite) from the 

solution set and the problem is effectively reduced in dimension from m to m-1 

(or r to r-1). This is, of course, expected from our initial assumptions about 
the stochastic properties of the clocks. 

For the case of uniform meaurement error statistics, e 

becomes more complex. When the number of outages e 

Some examples of W for outage cases are given below. 
satellite not observed by n on different terminals we set u 

and assume a uniform standard deviation of u for the remainder of the data 

streams. A diagonal weighting matrix is obtained (see Appendix 4 )  in the form 

given in Eq. ( 5 6 )  by the following expressions: 

For the case of a single 

1 2  n 
1 1  =u =---=a '=u/X 

2 1  



m m where W, a (2)N by (2)N diagonal matrix, is given by 

W =  1 

0 

- 
2 

(m-n)N (n-2)N (m-n)N N 2(m-n)N (m;n)N 
A-L; 

I I I I I  I 
I I I I I I  

I I I I I  I 
I I I I I I  

I I I I I  I 

--- 
I 
I 
I 

. .  
I I I  
I I I  

I 
I 

Here, arb, and c are given by 

r h 4  a =  
2 2 2 [rnh +(r-l+A )(m-n)](r-l+h ) 

b =  h2 
2 rnA2 +(r-l+h )(m-n) 

I I I  
I I I  
I I I  
I I I  

I * *  
cl I 

I 

2 c =  r-1 + A 
2 2  2 nr h +(r-l+h )(m-n)r 
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Setting 
involving a single satellite and no outages on the r-1 remaining satellites. 

A = 0 in these expressions yields the weights for the case of n outages 
1 
i 

In the case of two satellites with outages one must consider whether these 
t 

outages involve common terminals, different terminals, or some combination. The 

forms for W are substantially different for the three cases. The diagonal 
weights for these cases are provided in Appendix 4. In general, as the number 

of terminals experiencing outages increases, the topology of W and ll becomes 
increasingly more complex resulting in very complicated algebraic expressions 

for W. 

VIII. CONCLUSIONS 

The reader has no doubt detected a preference for linear combination methods 

such as the Householder method rather than double differencing. In the planned 

global GPS tracking network for a demonstration on NASA's planned Ocean 

Topography Experiment mission, TOPEX, [7], 18 GPS satellites would be aloft and 

roughly a dozen globally distributed GPS terminals, including one on TOPEX, 
would be tracking, although not all simultaneously. Nevertheless, 

potentially explosive number. On the other hand, double differencing has a 

number of attractive features that have been noted. It is of interest to 

compare the relative computational times of the two approaches. 

(;)(r;l) is a 

Using the Householder approach it may be shown [8] that the computational time 

TH, required to transform Eq. (1) into Eq. (7) at a single epoch (N=l) is given 
approximately by the expression 

TH = p(mr)(m+r+p+l) 2 

where p is a constant coefficient for a specified computer of fixed 

configuration; it accounts for the detailed arithmetic and normalization 

operations in a floating point operation and the transfer of data in and out of 
memory. In the case of fully redundant double differencing one must first form 

the weighted double differenced regression equations from the undifferenced 

regression system and then apply a filter routine. For ease of comparison of 
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the computation times we assume that the Householder transformations are used on 
the weighted double difference array to obtain the triangular array of Eq. (7). 
In this case the computational time, including the double differencing 

operations, is given by 

Here, A is a similar constant and X/)L  is of the order of unity. Normally, p 

will be some linear function of m and r. One can compare T and T for various 

combinations of these parameters using Eq. (66) and (67) or using actual 

measurements of computation time. In most cases except for modest values 

(m or r -4) of these parameters the straight Householder approach holds a 
definite computational advantage, typically amounting to a factor of three to 

five. However, the actual computational time for these operations using either 

method is not usually a major concern and is a small fraction of the 

computational time used in data management, editing and validation activities, 
and in forming the regression system itself. Of more concern is the size of the 

arrays that occur in the double differencing approach when the fully redundant 

differencing approach is used. 

H D 

< 

An alternative approach is to use the algebraic form for W (when available) to 
generate the matrix operator II. In this case ll is given by W 9 ]  instead of by 

DT[59A $]tS] thereby avoiding the numerical inversion of the double differenced 
measurement error covariance that results from using a less than fully redundant 

double difference operator. The computation time for the former approach 

increases as (mr)2, whereas it increases at a rate somewhat higher than (mr) 

for the latter approach. However, when ll is explicitly used to operate on the 

undifferenced regression system, one dispenses with explicit double differencing 

in favor of an orthogonal linear combination approach but one saves 

computational time and avoids the large arrays. 

T 

e 

3 

Linear combination methods effected through the Householder or similar 
transformations seem to offer a more attractive approach because they deal with 

only mrN regression rows and readily include the outage cases, and because they 

allow for ancillary stochastic modeling of the clock processes. 

Householder approach and double differencing approaches are currently being 

followed at JPL [ 5 ] .  

Both the 
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If fully redundant explicit double differencing is the chosen approach, the 

following summarizes the procedures (using a batch mode) to obtain a state 

vector estimate and its covariance, which are equivalent to those obtained from 

1 

, linear combination methods: 

(1) Reformat the system of regression equations according to Eq. ( 3 ) .  

( 2 )  Divide the tracking session into a mutually exclusive and exhaustive 

set of subsessions with the outages remaining invariant within each 

subsession. Each subsession would be characterized by an index i and 

by: m the number of participating terminals; r the number of 

participating satellites; and Ni, the number of simultaneous 
observations by each participant. 

i' i' 

( 3 )  For each of the n subsessions generate the appropriate weighting 

matrix W depending on the form of Ae, m and r i i' 

(4) For each subsession operate on the corresponding regression system 

with g t o  generate an expanded but double differenced set of the 

arrays regression equations and form W ' I g H ]  and W ' @ y ] .  
1 1 

( 5 )  Tn the batch mode assemble the weighted and double differenced 

regression systems for all n subsessions into a single ensemble. 

( 6 )  Invert this ensemble to obtain the least squares estimate of x and its 
covariance using one's preferred inversion method such as Householder, 

Cholesky, least squares, etc. 
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APPENDIX 1: ANAL,YTIC FORMS FOR A-$ FOR THE MINIMALLY REDUNDANT DOUBLE 

DIFFERENCE OPERATOR 

T -1- 1 
[fiBA,g I - m r  

Analy t ic  forms f o r  A i 1  are available for t h e  minimally redundant double  

d i f f e r e n c e  o p e r a t o r  when he i s  f a c t o r a b l e  i n t o  t h e  form given  by Eq. (43 )  or 

( 4 4 ) .  I n  t h e  case where 

o p e r a t o r  de f ined  i n  E q s .  ( 2 9 )  and ( 3 0 ) ,  it may be shown t h a t  [ g A e g  I 
i s  t h e  minimally redundant double  d i f f e r e n c e  

T -1 
is g iven  

by 

( r - l ) X  - X 0 . .  -X 
-x . 

where t h e  matrix Y i s  de f ined  by 

T Y = [DaD ] 

and where Y - l  is  g iven  by 

-1 

b2b2 
-y- 

- Y-l 

brb2 

1 
a a  1 1  . . . 
1 

a a  m l  
- 

-1 

b2br 

. . .  ,y- 

-1 

brbr 

. . .  y - 

. .  

. .  

For t h e  uniform case (a  = bv = 1) , Eqn. ( A - 1 )  reduces  t o  
j 

r 

where X i s  g iven  by 

1 m - 1 - l m - l  m-1  X = m I  

1 
a a  l m  

1 
a a  m m  

(A-3) 

(A-4 1 

(A-5 1 

and where I and 1 are de f ined  by E q s .  ( 5 )  and (6 ) .  
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APPENDIX 2: PROPERTIES OF THE FULLY REDUNDANT DOUBLE DIFFERENCE OPERATOR 

defined in Eq. (31), can be Dm , The single difference matrix operator, 

alternatively defined by the recursive relationship I 
I 

l m  i -*m 1 

with D1 5 0 and where 1 
is (m-1)N. It follows from Eq. (A-6) that 

and I m m are defined by Eqs. ( 5 )  and ( 6 ) .  The rank of Dm 

= mI - 1 lT DmDm m m m  
T 

( A - 7 )  

which can be shown to have( m-l)N identical eigenvalues of value m and N null 

eigenvalues. Using the property 

D 1  E O  m m  

it follows from Eq. (A-7) that the pseudoinverse of D is given by m 

Here, the pseudoinverse of M has the standard definition 

M t M  Mi = Mt 

M MtM = M  I 
M Mt = (Mt)TMT 1 (A-10) 
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A property of D for n 5 m, given by the relationship 

0 1 
mn 

(A-11) 

is useful in "spectral decomposition" analyses; 

of II in certain cases may be expressed as 
for example, a sub-matrix block 

The double difference operator a i s  defined by Eq. (32). 
ST@, is given by 

The inner product 

- 
T -- D D 

0 

or alternatively, using Eq. ( A - 7 ) ,  it may be expressed as 

(A-12) 

( A - 1 3 )  

(A-14) 

T It follows that the rank o f 9  g i s  (m-l)(r-I)N. From Eqs. ( A - g ) ,  (31), and ( A - 1 3 )  

it follows that the pseudoinverse of a i s  given by 

t T g = L g  
mr ( A - 1 5 )  

A l s o ,  O%J/mr has (m-1) (r-l)N unit eigenvalues and (m+r-l)N null eigenvalues. 



APPENDIX 3: THE STRUCTURE OF THE II-MATRIX FOR A UNIFORM WEIGHTING MATRIX 

To obtain insight into the structure of ll in double differencing, it is helpful 

to examine the structure of IIthat follows from its direct computation using Eq. 

(13) for the case of uniform measurement error covariance. To examine II 
further, we will need the pseudoinverse of [B 'Le B]. 
strike one of the columns of B, thereby eliminating the rank deficiency in B, 
and deal with the inverse of [B A B] instead of the pseudoinverse. Column 

striking spoils the symmetry of the problem as posed, although it leads to the 
same results as the pseudoinverse applied to the fully dimensioned B. 
way, [B A B] is difficult to invert except in special cases where A is 

e e 
factorable, outages, etc. Let us show the form of [B A B] when Ae is 
uniform. It can be shown for this case that 

I 

I 
' 

T -1 Alternately, one could 

T -1 
e 

Either 
T -1 

T -1 
e 

8' B = 7  1 

0 

and that its pseudoinverse is given by 

I 
1 
I 

.-+ 
I 
I 
I 
I 

After some matrix algebra it may be shown using Eq. (13) that ll becomes 

(A-16) 

(A-17) 

(A-18) 

But, using Eq. (A-7) we now identify the array in Eq. (A-18) with that in Eq. 

(A-13). In terms of the9-matrices, we conclude that II is given by 
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n =  

Thus, the double differencing 

array for the covariance of 2 

2 

mr Q gTSa (A-19) 

structure appears in the expanded state space 

when it is factored according to Eq. (A-19). 

One can also derive other analytical forms for W from the expanded state space 

approach whenever explicit forms for the submatrix elements of IT can be obtained 
analytically from Eq. (13). Another approach using the idempotent properties of 
A f f  JIAe , is discussed in Appendix 4 .  

e 

30 



APPENDIX 4: OTHER DIAGONAL WEIGHTING MATRICES FOR MULTIPLE OUTAGES 
I 

1 0 - 
, O 

0 1 -  

t Inasmuch as the major topological properties of II are invariant to N ,  we set N = l  

in the discussion to follow without significant loss of generality. Another 

useful way to arrive at explicit forms for TI is to use the relationship 

I n  

}m-n 

II = I I A e n  (A-20) 

which follows from Eq. (13); also 

Trace [ iz n A: ] = (m-l)(r-1) (A-21) 

2 2 In addition, II satisfies the mzr2-(m-1) (r-1) orthogonality conditions defined 

T TIB = B n 0 (A-22 ) 

In theory these conditions are sufficient to solve for II when the form for 

A is given. In practice, the topology of II, except for the simplest of forms e 
for h e ,  becomes so complex that the resulting explicit algebraic expressions 
for the elements of II in terms of m,r and the elements of A are rather tedious 
to evaluate. In these cases a more practical approach is to numerically invert 

e 

n for N=l as given by Eq. (13). 

As examples of this analytical technique the single and double outage cases are 
presented. For a single satellite outage we consider a Ae with the form 

'A-2 0 

A-2 
0 . 

0 

0 

(A-23 ) 
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where X = 0 corresponds to the case of n terminals not observing a single 

particular satellite with the remainder of the terminals observing all r 
satellites. Applying part of the conditions in Eq. (A-22) one obtains a r[ of the 

form 

r [ =  

(r-1)A -A . . . . . . . - A 
-A A+(r-2)B -B . . . .- B 

-B A+(r-2)B 
0 

0 0 

* -A -B A+(r-2)B 

Applying Eq. (A-20) one obtains the conditions on A and B 

2 rA = A 

(A-24 ) 

(A-25) 

and 
(A-26 ) T (r-l)B = [D D/m - A] 

Next, equating the elements of the matrices in these expressions and applying 

Eq. (A-21) and the remainder of the orthogonality conditions one obtains for A 

the form 
T 

b llT dI+cllT 
(A-27 ) 

where the coefficients a,b, and c are given in Eq. (65), and d and r are given 

(A-28) 

The elements of B follow from Eq. (A-26). 

B is necessary because they are already symmetric for this special case. With 

these expressions for A and B placed in ll as given by Eq. (A-24) which is in 
T turn equated to [GB Wq] as given by Eqs. (58) and (61), one obtains the algebraic 

expressions for the diagonal weights that are given in Eq. (65). 

Note that no symmetricizing of A and 

For the double outage case we let one satellite incur outages on x different 
terminals. We let a second satellite incur y outages that involve terminals 

among those x terminals not observing the first satellite. We let the second 
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satellite also incur z outages involving terminals observing the first 
satellite. Thus, the second satellite incurs a total of y+z outages with y<=x 
and z<=m-x. 

exchange the roles of satellites and terminals.) The form for A e may be given 

I 
l (There is a duality symmetry in this problem that allows one to 

by 

-2 - i: - 

- 
0.. I I I I I i 0 -}x 

I I 
I I I I Iy 

I 1 O I  I I I I I I O .  ‘‘0 )” 

I I 
I I 
I I 

‘ 0  I 
I 

I I m-x+m(r-2) 
I ‘1 I I 

I I ‘01 

I 
I 
I 

; I . .  I I I I I I 

. I  I 

1 I 

I 

I 

I 

I io.. I I 

I1. I 
I 

I I I I 
I 

I 

I 

I 
I I m-y-z 

I 

I 
I I I 1 4 

the topology of Jl has the form 

be 

(A-29) 

shown that 

(A-30) 

Where each of the sub-matrices A,B,C and E are m by m. 
data streams for the first satellite correspond to zeros in the first x rows and 

columns of II. Similarly, the z missing data streams for the second satellite 
(which for convenience has been placed last) correspond to zeros in the last z 

rows and columns. The y outages of the second satellite correspond to zeros in 
rows and columns numbering (r-l)m+l through (r-l)m+y. Thus B and E, the top and 

bottom edge matrices are of rank m-x-1 and m-y-2-1, respectively. The rank of A, 

the corner matrix, is the smaller of the ranks of A and E. These matrices are 

Here, the x missing 
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generally not symmetric and will have to be decomposed into symmetric and 

antisymmetric parts before equating them to the diagonal weight matrices given 

in Eqs. (58) and (59). The core matrix C, is symmetric and explicitly appears 

whenever r>=4. For r=2 or 3 ,  C may be considered as a virtual matrix which does 

not explicitly appear in n .  For all values of r22 it may be shown upon 

applying Eqn. (A-20) that B,C and E satisfy the relation 

L J 

T (r-2)C = D D/m - B-E 

- - 

The topologies of B,C and E can be described in block matrix form by 

c - 

0 
3 i 

r 1 

B =  

c =  

and 

E =  

m-x-z 

1 J 

~ I Y  

} x-Y 
1 
I z  

m-x-z 

Y 

Y-X 

m-x-z 

Z 

(A-31) 

(A-32) 

(A-33) 

(A-34) 
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It may be shown that the non-zero elements of B satisfy the relation 
I 

Similarly, the non-zero elements of E are given by 

r V  m 'I 

e ij cij + 12 ckj +C ckj J/(rn-y-z) 
k= 1 k=m-z+l 

Also, the non-zero elements of A are given by 

a - - bij + $bik /(m-y-z) 
ij 

=m-z+l 

It may be shown that the form of C has the additional properties given by 

c =  

(A-35) 

(A-36) 

(A-37) 

(A-38) 

Thus, it suffices to determine the elements of the core matrix C given in Eq. 

(A-38). Applying these relationships between B,C and E in Eqs. (A-31), (A-35) 

and (A-36) and the remainder of the orthogonality conditions in Eq. (A-22), one 
obtains 

a = l/(r-2) 
c = l/(r-l) 

g = l/r 

k = l/(r-1) 

b = -1/m(r-2) 

d =  r-1) (y + z )  (m-x) - z(m-x+y) -1 + (  
m(r-1) m (r-l)(r-2)H 

e =  (r-2)(m-x)(rz-(r-l)m) + y[(r-1) (m-x)-zl 
m (r-2)H 

t (A-39) 

I 
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f =  -r(r-2)(m-y-z)(m-x) + y(m-x-z) 
m( r-2)H 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 39-21-18 0 -1-14 6 9 0 -1-14 6 9 
0 0-21 39-18 0 -1 6-14 9 0 -1 6-14 9 

h =  - (  r-2)[(r-l)(m-x)-x][(r-l)(m-z)- ) I  + y[( r-l)(r(r-l)(m-x)-(r-2)m)-rz~ 
mr( r-2)H 

0 2-11 9 0 
0 2 9-11 0 

j = - (r-2)(m-z)[(r-l)(m-x)-x] + y[( r-1) (m-x)-(r-2)m-z] 
m( r-2)H 

0-18-18 36 
0 0 0 0 

2 g = -  1 + rx(m-z) + y[m-z-(r-ll a 
m(r-1) m(r-l)H m(r-l)(r-2)H 

1 0 2 8 8-181 0 2 8 8-18 0 -4 2 2 0 
032-8-8-8-8-32 8 8 8 8 0 0 0 0 0 

where 

0 0 -1 -1 2 
0 0-14 6 8 
0 0 6-14 8 
0 0 9 9-18 

(A-40 ) 2 H = (r-1) (m-x)(m-y-2)-z(x-y) 

-8 41-12-12 -9 8-23 4 4 7 0-18 9 9 0 
-8-12 46-14-12 8 4-18 2 4 0 8-14 6 0 
-8-12-14 46-12 8 4 2-18 4 0 8 6-14 0 
-8 -9-12-12 41 8 7 4 4-23 0 2 -1 -1 0 

The expressions for the elements of A,B and E follow from E q s .  (A-35), (A-36) 

and (A-37). 

0 0 0 0 0-32 8 8 8 8 3 2 - 8 - 8 - 8 - 8  
0 0 -1 -1 2 8-23 4 4 7 -8 41-12-12 -9 
0 0-14 6 8 8 4-18 2 4 -8-12 46-14-12 
0 0 6-14 8 8 4 2-18 4 -8-12-14 46-12 

As an example, the matrix n ,  obtained numerically from Eq. (13), is presented 
below for the case wh&e m = 5, r = 4, x = 2, y = 1, and z = 1. 

0 0 0 0 0 
0-18 9 9 0 
0 8-14 6 0 
0 8 6-14 0 

80II for m,r,x,y,z = 5,4,2,1,1 

0 0 9 9-18 1 8 7 4 4-23 -8 -9-12-12 41 0 2 -1 -1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 2 2 -4 
0 0-11 9 2 
0 0 9-11 2 

0-18 8 8 2 0-18 8 8 2 0 36-18-18 0 
0 9-14 6 -1 0 9-14 6 -1 0-18 39-21 0 
0 9 6-14 -1 0 9 6-14 -1 0-18-21 39 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
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